Elevated activation of CaMKIIα in the CPEB3-knockout hippocampus impairs a specific form of NMDAR-dependent synaptic depotentiation
نویسندگان
چکیده
Cytoplasmic polyadenylation element binding protein 3 (CPEB3) is a sequence-specific RNA-binding protein that confines the strength of glutamatergic synapses by translationally downregulating the expression of multiple plasticity-related proteins (PRPs), including the N-methyl-D-aspartate receptor (NMDAR) and the postsynaptic density protein 95 (PSD95). CPEB3 knockout (KO) mice exhibit hippocampus-dependent abnormalities related not only to long-term spatial memory but also to the short-term acquisition and extinction of contextual fear memory. In this study, we identified a specific form of NMDAR-dependent synaptic depotentiation (DPT) that is impaired in the adult CPEB3 KO hippocampus. In parallel, cultured KO neurons also exhibited delayed morphological and biochemical responses under NMDA-induced chemical long-term depression (c-LTD). The c-LTD defects in the KO neurons include elevated activation of calcium/calmodulin-dependent protein kinase II alpha subunit (CaMKIIα), increased Ser831 phosphorylation of GluA1 and slow degradation of PSD95 and GluA1. Because transient pharmacological suppression of CaMKIIα activity during the DPT-initiating phase successfully reversed the LTP in the KO hippocampus, DPT and c-LTD in the two different systems shared common molecular defects due to the absence of CPEB3. Together, our results suggest that CPEB3 deficiency imbalances NMDAR-activated CaMKIIα signaling, which consequently fails to depress synaptic strength under certain stimulation conditions.
منابع مشابه
G protein-activated inwardly rectifying potassium channels mediate depotentiation of long-term potentiation.
Excitatory synapses in the brain undergo activity-dependent changes in the strength of synaptic transmission. Such synaptic plasticity as exemplified by long-term potentiation (LTP) is considered a cellular correlate of learning and memory. The presence of G protein-activated inwardly rectifying K(+) (GIRK) channels near excitatory synapses on dendritic spines suggests their possible involvemen...
متن کاملCPEB4 Knockout Mice Exhibit Normal Hippocampus-Related Synaptic Plasticity and Memory
Regulated RNA translation is critical to provide proteins needed to maintain persistent modification of synaptic strength, which underlies the molecular basis of long-term memory (LTM). Cytoplasmic polyadenylation element-binding proteins (CPEBs) are sequence-specific RNA-binding proteins and regulate translation in various tissues. All four CPEBs in vertebrates are expressed in the brain, incl...
متن کاملNeuralized1 Activates CPEB3: A Function for Nonproteolytic Ubiquitin in Synaptic Plasticity and Memory Storage
The cytoplasmic polyadenylation element-binding protein 3 (CPEB3), a regulator of local protein synthesis, is the mouse homolog of ApCPEB, a functional prion protein in Aplysia. Here, we provide evidence that CPEB3 is activated by Neuralized1, an E3 ubiquitin ligase. In hippocampal cultures, CPEB3 activated by Neuralized1-mediated ubiquitination leads both to the growth of new dendritic spines ...
متن کاملDeletion of CPEB3 enhances hippocampus-dependent memory via increasing expressions of PSD95 and NMDA receptors.
Long-term memory requires activity-dependent synthesis of plasticity-related proteins (PRPs) to strengthen synaptic efficacy and consequently consolidate memory. Cytoplasmic polyadenylation element binding protein (CPEB)3 is a sequence-specific RNA-binding protein that regulates translation of several PRP RNAs in neurons. To understand whether CPEB3 plays a part in learning and memory, we gener...
متن کاملP6: Metabotropic Glutamate Receptor-Dependent Role in the Formation of Long-Term Potentiation
Long-term potentiation (LTP) is a reflection of synaptic plasticity that induced by specific patterns of synaptic activity and has an important role in learning and memory. The first clue of the potential role of glutamate receptors in LTP was in 1991 with the observation that the mGluR agonists 1-amino-1, 3-cyclopentanedicarboxylic acid (ACPD), increased LTP. Studies have shown that ACPD induc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2014